Human SNPs reveal no evidence of frequent positive selection.

نویسندگان

  • Liqing Zhang
  • Wen-Hsiung Li
چکیده

We compared the single-nucleotide polymorphisms (SNPs) in humans in 182 housekeeping and 148 tissue-specific genes. SNPs were divided into rare and common polymorphisms based on their frequencies. We found that housekeeping genes tend to be less polymorphic than tissue-specific genes for both rare and common SNPs. Using mouse as a second species for computing sequence divergences, we found no evidence of positive selection: for both housekeeping and tissue-specific genes, the ratio of nonsynonymous to synonymous common SNPs per site showed no significant difference from that of divergence. Similarly, we observed no evidence of positive selection for the 289 and 149 genes that have orthologs available for divergence calculation between humans and chimpanzees and between humans and Old World monkeys, respectively. A comparison with previous SNP studies suggests that approximately 20% of the nonsynonymous SNPs in the human population are nearly neutral and that positive selection in the human genome might not be as frequent as previously thought.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A tale of two haplotypes: the EDA2R/AR Intergenic region is the most divergent genomic segment between Africans and East Asians in the human genome.

Single nucleotide polymorphisms (SNPs) with large allele frequency differences between human populations are relatively rare. The longest run of SNPs with an allele frequency difference of one between the Yoruba of Nigeria and the Han Chinese is found on the long arm of the X chromosome in the intergenic region separating the EDA2R and AR genes. It has been proposed that the unusual allele freq...

متن کامل

Population differentiation as an indicator of recent positive selection in humans: an empirical evaluation.

We have evaluated the extent to which SNPs identified by genomewide surveys as showing unusually high levels of population differentiation in humans have experienced recent positive selection, starting from a set of 32 nonsynonymous SNPs in 27 genes highlighted by the HapMap1 project. These SNPs were genotyped again in the HapMap samples and in the Human Genome Diversity Project-Centre d'Etude ...

متن کامل

Signatures of recent positive selection at the ATP-binding cassette drug transporter superfamily gene loci.

Members of the ATP-binding cassette (ABC) superfamily of transporters have been implicated as major players in drug response. Single nucleotide polymorphisms (SNPs) in the ABC transporter genes may account for variation in drug response between individuals. Given the abundance of SNPs within the human genome, identification of functionally important SNPs is difficult. Here, we utilized signatur...

متن کامل

Selection for Translation Efficiency on Synonymous Polymorphisms in Recent Human Evolution

Synonymous mutations are considered to be "silent" as they do not affect protein sequence. However, different silent codons have different translation efficiency (TE), which raises the question to what extent such mutations are really neutral. We perform the first genome-wide study of natural selection operating on TE in recent human evolution, surveying 13,798 synonymous single nucleotide poly...

متن کامل

Identification of Metabolic Modifiers That Underlie Phenotypic Variations in Energy-Balance Regulation

OBJECTIVE Although recent studies have shown that human genomes contain hundreds of loci that exhibit signatures of positive selection, variants that are associated with adaptation in energy-balance regulation remain elusive. We reasoned that the difficulty in identifying such variants could be due to heterogeneity in selection pressure and that an integrative approach that incorporated experim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 22 12  شماره 

صفحات  -

تاریخ انتشار 2005